Wave Refraction: Lenses

Definitions	<u>Equations</u>	Questions
Convex LensesThe object is beyond C: image will be an inverted image/reduced in size/realThe object is at C: image will be inverted/equal to the object size/real.The object is at C: image will be inverted/equal to the object is between C & F: image will be inverted/larger/real.The object is between C & F: image will be inverted/larger/real.The object is at F: When the object is located at the focal point, no image is formed.The object is in front of F: image will be upright/magnified/virtual. The image is located on the object's side of the lens.Concave Lenses Regardless of the position of the object the image will always be virtual/upright/ reduced in size. The image is located on the object's side of the lens by tracing the rays back to where they appear to come from.	$ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} $ Focal lengthfm $Diject distanced_omImage distanced_imm = \frac{d_i}{d_o} = \frac{h_i}{h_o} Image distanced_im = \frac{d_i}{d_o} = \frac{h_i}{h_o} Image heighth_im = \frac{d_i}{d_o} = \frac{h_i}{h_o} Image heighth_ih_iHeight of the object.h_ih_iHeight of the image.m:Magnification – the ratio of height of object, h_o to height of image, h_iIf d_i is the same side as the object it is negativeImage height, h_i for a virtual image is negativeImage height for a concave lens is negative$	 THE ENLARGED EYE (2018;1) Sophie and her friend John were investigating magnifying glasses (convex lenses). Sophie laughed at the size that John's eye appeared when he placed the lens over his eye. (a) Complete the following ray diagram to show how John's eye (the object) appears enlarged, as in the photo. Clearly indicate its size and position. (b) The lens has a focal length of 12 cm. John holds the lens 5 cm from his eye. Calculate the distance the image is from the lens and state the nature of the image produced. (c) If the eye (object) has a height of 2.0 cm, calculate the magnification AND the height of the image of the eye.
Terms F: the focal length C: the centre of curvature (where C = 2f) Real image: An image generated by a lens that can be projected onto a screen Virtual image: An image where light rays appear to originate from a lens; this image cannot be projected on a screen	 Tips Ray diagrams for convex lenses A ray parallel to the principal axis will be refracted through F behind the lens. A ray that passes through F in front of the lens will be refracted parallel to the principal axis. A ray that passes through the centre of lens (the pole) will continue with no change in direction. Ray diagrams for convex lenses A ray parallel to the principal axis will be refracted away from as if it has come from the focal point F in front of the lens. A ray that heading towards F behind the lens will be refracted parallel to the principal axis. A ray that passes through the centre of lens (the pole) will continue with no change in direction. REMEMBER – you do not need to draw all 3 rays. The first two are enough, and then you can use the 3rd ray as a check. 	(a) (b) $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$ (c) $\frac{h_i}{h_o} = \frac{d_i}{d_o}$ $\frac{d_i}{d_o} = 5 \text{ cm}$ $f = 12 \text{ cm}$ $\frac{1}{d_i} = \left(\frac{1}{12} - \frac{1}{5}\right)^{-1} = (0.117)^{-1}$ $\frac{h_i}{h_o} = m$ $h_i = m \times h_o = -1.71 \times 2 = -3.43 \text{ cm}$ Properties: upright, magnified and virtual.